全文检索
搜索
@
搜 索
高级检索 政策文件检索
搜索结果:
文件格式:
全部 所有格式 WORD PPT EXCEL PDF TXT ZIP
时间范围:
全部时间 一年内 一月内 一周内 自定义

结果排序:
按相关度 按日期倒序 按日期正序
搜索位置:
标题 正文 附件
关键词:
发文机构:
发文字号:
日期:
搜索位置:
全文 标题
结果排序:
按相关度排序 按发布日期倒序 按实施日期倒序
×
全部时间
全部时间
一天内
一周内
一月内
一年内
全文查询
全文查询
标题查询
相关度排序
相关度排序
日期倒序
日期正序
清除
收起工具

10.931325 2025-09-30 10:28:37

科研团队
1 基本信息 姓名:车涛 性别:男 职称:研究员 杰青 博导 学历:博士 职务:遥感室主任 黑河遥感站站长 邮箱:chetao@lzbaccn 通讯地址:甘肃省兰州市城关区东岗西路320号 2 个人简介 车涛,博士,中国科学院西北生态环境资源研究院研究员,博导,杰青,遥感与地理信息科学研究室主任,中国科学院黑河遥感试验研究站站长。已主持完成国家自然科学基金面上项目3项,目前正在主持中国科学院A类先导专项和国家科技部基础调查专项两个国家级研究课题。长期从事积雪遥感研究,主要学术成果包括:(1)在我国青藏高原、西北和东北三大积雪区开展长期积雪野外观测,在祁连山建立了我国第一个综合积雪观测站,带领积雪团队开展积雪地面调查,获取了我国的积雪特性及分布;(2)发展了适合于我国积雪特性的微波遥感算法,率先提出了以积雪特性作为先验信息的动态遥感算法,并针对山区和林区等复杂环境下积雪遥感精度低的问题开展了创新性研究;(3)研发了我国长时间序列的雪深遥感产品,被国内外学者下载超过1300余次,并广泛应用在气候变化、水文水资源和灾害等研究领域。发表学术论文100余篇,参编专著10部,制定国家标准(草案)2项,国家发明专利4项,并分别获得2016年甘肃省自然科学一等奖和2018年测绘科技进步一等奖。 3 研究方向 冰冻圈遥感;积雪参数遥感反演;积雪观测试验;积雪数据同化 4 工作履历 2016-07~现在, 中国科学院西北生态环境资源研究院, 研究员 2014-01~2016-06, 中国科学院寒区旱区环境与工程研究所, 研究员 2009-01~2013-12, 中国科学院寒区旱区环境与工程研究所, 副研究员 2004-05~2008-12,寒区旱区环境与工程研究所, 助理研究员 5 教育经历 2000-09--2006-07 中国科学院寒区旱区环境与工程研究所 研究生/博士 1996-09--2000-07 西北大学 学士 6 科研项目 (1)国家自然科学基金杰出青年项目(42125604):积雪遥感 (2)中国科学院A类先导专项课题(XDA19070100):三极大数据共享与集成 (3)国家科技部基础调查专项课题(2017FY100501):中国典型积雪区积雪特性地面调查 (4)国家自然科学基金面上项目(41271356):积雪面积与雪水当量时空关系及其在寒区水文中的同化应用 (5)国家自然科学基金面上项目(40971188):非均匀条件下积雪微波辐射特性观测、理解与模拟 (6)国家自然科学基金青年科学基金(40601065):被动微波遥感反演雪水当量的数据同化方法研究 7 学术兼职 冰冻圈科学学会积雪专业委员会主任 国际数字地球学会中国国家委员会微波遥感专业委员会副主任 青藏高原研究会理事 全国遥感技术标准化技术委员会委员 国家遥感应用协会理事 甘肃省遥感学会秘书长 《地理科学》编委 《遥感学报》编委 《冰川冻土》编委 《遥感技术与应用》编委 8 奖励荣誉 2018年测绘科技进步一等奖 2016年甘肃省自然科学一等奖 9 学术成果(论文、专著、专利等) [1] 车涛,李新,李新武,等 冰冻圈遥感:助力“三极”大科学计划[J] 中国科学院院刊 2020, 35(04): 484-493 [2] 车涛,李弘毅,晋锐,等 遥感综合观测与模型集成研究为黑河流域生态环境保护与可持续发展提供科技支撑[J] 中国科学院院刊 2020, 35(11): 1417-1423 [3] 车涛,郝晓华,戴礼云,等 青藏高原积雪变化及其影响[J] 中国科学院院刊 2019, 34(11): 1247-1253 [4] Sun S, Che T, Gentine P, et al Shallow groundwater inhibits soil respiration and favors carbon uptake in a wet alpine meadow ecosystem[J] AGRICULTURAL AND FOREST METEOROLOGY 2021, 297(108254) [5] Hu Y, Che T, Dai L, et al Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere[J] Remote Sensing 2021, 13 [6] Su L, Che T, Dai L Variation in Ice Phenology of Large Lakes over the Northern Hemisphere Based on Passive Microwave Remote Sensing Data[J] Remote Sensing 2021, 13 [7] Deng J, Che T, Jiang T, et al Suitability projection for Chinese ski areas under future natural and socioeconomic scenarios[J] Advances in Climate Change Research 2021 [8] Dai L, Che T, Xiao L, et al Improving the Snow Volume Scattering Algorithm in a Microwave Forward Model by Using Ground-Based Remote Sensing Snow Observations[J] IEEE Transactions on Geoscience and Remote Sensing 2021, PP(99): 1-17 [9] Tan J, Che T, Wang J Reconstruction of the Daily MODIS Land Surface Temperature Product Using the Two-Step Improved Similar Pixels Method[J] Remote Sensing 2021 [10] Zhang J, Liu L, Su L, et al Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai--Tibet Plateau[J] The Cryosphere 2021, 15(6): 3021-3033 [11] Xiao X, Zhang F, Li X, et al Using stable isotopes to identify major flow pathways in a permafrost influenced alpine meadow hillslope during summer rainfall period[J] Hydrological Processes 2020, 34(5): 1104-1116 [12] Chen T, Pan J, Chang S, et al Validation of the SNTHERM Model Applied for Snow Depth, Grain Size, and Brightness Temperature Simulation at Meteorological Stations in China[J] Remote Sensing 2020, 12 [13] Zhang H, Zhang F, Che T, et al Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations[J] Science of The Total Environment 2020: 138156 [14] Xiao X, Zhang F, Che T, et al Changes in plot-scale runoff generation processes from the spring–summer transition period to the summer months in a permafrost-dominated catchment[J] Journal of Hydrology 2020, 587: 124966 [15] Xiao L, Che T, Dai L Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980-2016[J] REMOTE SENSING 2020, 12(325319) [16] Wang W, Yang K, Zhao L, et al Characterizing Surface Albedo of Shallow Fresh Snow and Its Importance for Snow Ablation on the Interior of the Tibetan Plateau[J] JOURNAL OF HYDROMETEOROLOGY 2020, 21(4): 815-827 [17] Li X, Che T, Li X, et al CASEarth Poles Big Data for the Three Poles[J] BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2020, 101(9): E1475-E1491 [18] Yu L, Shang J, Cheng Z, et al Assessment of Cornfield LAI Retrieved from Multi-Source Satellite Data Using Continuous Field LAI Measurements Based on a Wireless Sensor Network[J] REMOTE SENSING 2020, 12(330420) [19] Geng L Y, Che T, Wang X F, et al Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000-2017[J] REMOTE SENSING 2019, 11(2) [20] Hao X, Luo S, Che T, et al Accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau[J] INTERNATIONAL JOURNAL OF DIGITAL EARTH 2019, 12(4): 375-393 [21] Sun S, Che T, Li H, et al 9Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited[J] AGRICULTURAL AND FOREST METEOROLOGY 2019, 275: 283-295 [22] Deng J, Che T, Xiao C, et al Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions[J] CRYOSPHERE 2019, 13(8): 2149-2167 [23] Li G, Li X, Yao T, et al Heterogeneous sea-level rises along coastal zones and small islands[J] SCIENCE BULLETIN 2019, 64(11): 748-755 [24] Zhang H, Zhang F, Zhang G, et al Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold[J] Science of The Total Environment 2019, 651(2): 2712-2726 [25] Che T, Li X, Liu S, et al Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J] Earth System Science Data 2019, 11(3): 1483-1499 [26] Wang X, Wang J, Che T, et al Snow Cover Mapping for Complex Mountainous Forested Environments Based on a Multi-Index Technique[J] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2018, 11(5): 1433-1441 [27] Zhang H, Zhang F, Zhang G, et al How Accurately Can the Air Temperature Lapse Rate Over the Tibetan Plateau Be Estimated From MODIS LSTs?[J] Journal of Geophysical Research: Atmospheres 2018, 0(0) [28] Wu X, Che T, Li X, et al Slower Snowmelt in Spring Along With Climate Warming Across the Northern Hemisphere[J] Geophysical Research Letters 2018, 45(22): 12, 312-331, 339 [29] Dai L, Che T, Xie H, et al Estimation of Snow Depth over the Qinghai-Tibetan Plateau Based on AMSR-E and MODIS Data[J] Remote Sensing 2018, 10(12}, ARTICLE-NUMBER = {1989) [30] Liu S, Li X, Xu Z, et al The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China[J] Vadose Zone Journal 2018, 17(1800721) [31] Sun S, Song Z, Wu X, et al Spatio-temporal variations in water use efficiency and its drivers in China over the last three decades[J] ECOLOGICAL INDICATORS 2018, 94(1): 292-304 [32] Shi Y, Niu F, Yang C, et al Permafrost Presence/Absence Mapping of the Qinghai-Tibet Plateau Based on Multi-Source Remote Sensing Data[J] REMOTE SENSING 2018, 10(3092) [33] Dai L, Che T, Ding Y, et al Evaluation of snow cover and snow depth on the Qinghai--Tibetan Plateau derived from passive microwave remote sensing[J] The Cryosphere 2017, 11(4): 1933-1948 [34] Xiao L, Che T, Chen L, et al Quantifying Snow Albedo Radiative Forcing and Its Feedback during 2003-2016[J] REMOTE SENSING 2017, 9(8839): 1-10 [35] Gou P, Ye Q, Che T, et al Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products[J] Journal of Great Lakes Research 2017, 43(6): 989-998 [36] Wang X, Xiao J, Li X, et al No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau[J] Journal of Geophysical Research-Biogeosciences 2017, 122(12): 3288-3305 [37] Li X, Liu S, Xiao Q, et al A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system[J] SCIENTIFIC DATA 2017, 4(UNSP 170083) [38] Che T, Dai L Y, Zheng X M, et al Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J] Remote Sensing of Environment 2016, 183: 334-349 [39] Wang Z, Che T, Liou Y A Global Sensitivity Analysis of the L-MEB Model for Retrieving Soil Moisture[J] Geoscience and Remote Sensing, IEEE Transactions on 2016, 54(5): 2949-2962 [40] Sun S, Chen B, Ge M, et al Improving soil organic carbon parameterization of land surface model for cold regions in the Northeastern Tibetan Plateau, China[J] Ecological Modelling 2016, 330: 1-15 [41] Mo H M, Dai L Y, Fan F, et al Extreme snow hazard and ground snow load for China[J] Natural Hazards 2016: 1-26 [42] Zhang H, Zhang F, Ye M, et al Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data[J] Journal of Geophysical Research: Atmospheres 2016, 121(19): 11, 411-425, 441 [43] Mashtayeva S, Dai L, Che T, et al Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan [J] Journal of Meteorological Research 2016, 30(6): 1033-1043 [44] Sun S B, Che T, Wang J, et al Estimation and Analysis of Snow Water Equivalents Based on C-band SAR Data and Field Measurements[J] Arctic, Antarctic, and Alpine Research 2015, 2(47): 313-326 [45] Zhao T, Shi J C, Bindlish R, et al Refinement of SMOS Multiangular Brightness Temperature Toward Soil Moisture Retrieval and Its Analysis Over Reference Targets[J] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2015, 2(8): 589-603 [46] Dai L, Che T, Ding Y Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China[J] Remote Sensing 2015, 7(6): 7212-7230 [47] Ma M G, Che T, Li X, et al A Prototype Network for Remote Sensing Validation in China[J] Remote Sensing 2015, 7: 5187-5202 [48] Li H Y, He Y Q, Hao X H, et al Downscaling Snow Cover Fraction Data in Mountainous Regions Based on Simulated Inhomogeneous Snow Ablation[J] Remote Sensing 2015, 7(7): 8995-9019 [49] Che T, Xiao L, Liou Y Changes in glaciers and glacial lakes and the identification of dangerous glacial lakes in the Pumqu river basin, Xizang (Tibet)[J] Advances in Meteorology 2014, 2014: 8 [50] Che T, Li X, Jin R, et al Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth[J] Remote Sensing of Environment 2014, 143: 54-63 [51] Li H Y, Tang Z G, Wang J, et al Synthesis method for simulating snow distribution utilizing remotely sensed data for the Tibetan Plateau[J] Journal of Applied Remote Sensing 2014, 8: 84696 [52] Dai L, Che T Spatiotemporal variability in snow cover from 1987 to 2011 in northern China[J] Journal of Applied Remote Sensing 2014, 8(084693) [53] Wang J, Li H X, Hao X H, et al Remote sensing for snow hydrology in China: challenges and perspectives[J] Journal of Applied Remote Sensing 2014, 8(084687) [54] Li X, Cheng G D, Liu S M, et al Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design[J] Bulletin of the American Meteorological Society 2013, 94(8): 1145-1160 [55] Che T, Dai L Y, Wang J, et al Estimation of snow depth and snow water equivalent distribution using airborne microwave radiometry in the Binggou Watershed, the upper reaches of the Heihe River basin[J] International Journal of Applied Earth Observation and Geoinformation 2012, 17(SI): 23-32 [56] Dai L Y, Che T, Wang J, et al Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J] Remote Sensing of Environment 2012, 127: 14-29 [57] Che T, Li X, Jin R Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J] Chinese Science Bulletin 2009, 54(13): 2294-2299 [58] Jin R, Li X, Che T A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J] Remote Sensing of Environment 2009, 113(12): 2651-2660 [59] Li X, Li X W, Li Z Y, et al Watershed Allied Telemetry Experimental Research[J] Journal of Geophysical Research-Atmospheres 2009, 114 [60] Li X, Cheng G D, Jin H J, et al Cryospheric change in China[J] Global and Planetary Change 2008, 62(3-4): 210-218 [61] Yue Z Y, Cao Z X, Li X, et al Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution[J] Science in China Series G-Physics Mechanics & Astronomy 2008, 51(9): 1427-1438 [62] Che T, Li X, Jin R, et al Snow depth derived from passive microwave remote-sensing data in China[J] Annals of Glaciology 2008, 49: 145-154 [63] Li X, Huang C L, Che T, et al Development of a Chinese land data assimilation system: its progress and prospects[J] Progress in Natural Science 2007, 17(8): 881-892 [64] Jin R, Li X, Che T, et al Glacier area changes in the Pumqu river basin, Tibetan Plateau, between the 1970s and 2001[J] Journal of Glaciology 2005, 51(175): 607-610 [65] Lu L, Li X, Huang C L, et al Investigating the relationship between ground-measured LAI and vegetation indices in an alpine meadow, north-west China[J] International Journal of Remote Sensing 2005, 26(20): 4471-4484
al et 遥感 China 积雪
系统管理员   2025-09-30 10:29:54

10.889417 2025-09-29 15:04:20

高原 稳定性 冻土 青藏 制图
系统管理员   2025-09-29 15:06:02

10.393089 2025-09-24 09:52:25

目标 可持续发展 SDG 联合国 水和
系统管理员   2025-09-24 09:52:43

10.393028 2025-09-24 09:51:45

数据管理 装置 方法
系统管理员   2025-09-24 09:52:08

10.392989 2025-09-24 09:51:19

交叉 产品 遥感 检验 覆被
系统管理员   2025-09-24 09:51:45

10.39295 2025-09-24 09:50:53

方法 估算 遥感 装置 厚度
系统管理员   2025-09-24 09:51:19

10.392895 2025-09-24 09:50:16

展示 查询 地理信息系统 地理信息 平台
系统管理员   2025-09-24 09:50:52

10.392663 2025-09-24 09:47:43

地理信息 信息采集 网络 查询 用于
系统管理员   2025-09-24 09:48:09

10.392575 2025-09-24 09:46:45

高原 畜牧业 青藏 可持续发展 风险
系统管理员   2025-09-24 09:47:12

10.392535 2025-09-24 09:46:18

遥感 原理 定量 应用 植被
系统管理员   2025-09-24 09:46:45